Next Generation Networking Overview 15 Sept 2005

Wireless Network After Next

Preston Marshall preston.marshall @darpa.mil

Defense Advanced Research Projects Agency

Advanced Technology Office

Next Generation Communications

Opinions expressed are those of the authors, and do not represent the position of DARPA, the Department of Defense, or the United States Government

DARPA XG Program

All Spectrum May Be Assigned, But...

...Most Spectrum Is Unused!

XG is Developing the Technology and System Concepts for DoD to Dynamically Access All Available Spectrum

Goal: Demonstrate Factor of 10 Increase in Spectrum Access

XG Program Aspects

The Primary Product XG Program is Not a New Radio, but a Set of Advanced Technologies for Dynamic Spectrum Access

XG Key Principles

- Suitable for Range of Architectural Implementations
 - Centralized And Decentralized
- Identify "Interference-Preventing" Core Set
 - Flexible with Respect to Desired Interference Threshold(s)
 - Extensible To Other Features (Subleasing, Microcharging,...)
- Separate Policies From Engineering
 - Avoid Advocacy For Specific Sharing Policies
 - XG Being Developed In Advance of Policy Framework
- Provide For Richness/Complexity of Policies
 - Regulations Neither Flat Nor Hierarchical
- Allow For Diversity of Policy Sources
 - Peer-Peer And Hierarchical Policy Authorities
 - Enable Extension To "Cognitive" Optimizing Logic

Policy "Layer" Flexible for Implementations to Use Without Revisiting for Engineering & Policy Changes

XG – Program Components

The Primary Product XG Program is Not a New Radio, but The Critical Technologies for Dynamic Military Access to Spectrum

XG Operation

XG Sensor

- XG Sensor Focuses on Capabilities and Features Needed for JTRS C-1 Transition
 - Significantly smaller footprint (more than 3X volume reduction)
 - RF card is 2X2 inches
 - Continuous frequency coverage 30 MHz 2.5 GHz (vs. 6 bands)
 - Only 1 filter for 30 MHz 1 GHz
 - Low power devices reduced power to 1 W average
 - Fast FFT frame rate
 - 1 mSec, 8192 bins x 14 bits
- Enhanced Digital Architecture
- Will be Deployed in Phase 3 Prototypes

XG – Phase 2 Significant Findings

- All Signals are Not Created Equal
 - Understanding of Temporal Characteristics Is Necessary
 - Need to Detect Below Noise Floor
 - Interference Avoidance Policies Specific to Detected Signal
- Degree of A Priori Knowledge of Signals Provides Significant Performance Enhancement
 - Difference in Detecting Known vs. Unknown Signals in Noise Affects How Aggressively XG Can Access Spectrum
 - Allocation Tables Provide A Priori Knowledge of Expected Signal Types,
 Especially Fixed and Broadcast
- Policy Reasoning Necessary for Range of Incumbent Signal Protection
 - Commercial Services Are Sensitive to Effects of Interference at Many Levels, Including Reception Quality, BER, and Increase in Transmitter Power
 - Military Signals Are Inherently Hardened and Tolerant of Interference
 - Agile Systems Can Even Move If Interference Occurs

XG Phase 2 Results Summary - Heterogenous Link Evaluations -

Data from Lockheed Martin, Raytheon, and Shared Spectrum Company models

Phase 3 Development and Demonstration Activities

- Build XG Technologies in Prototype Radio
 - Integrate The Radio, Adaptation Algorithms, Sensor Components,
 Policy-based Controls, And Radio Software into SCA Traceable
 Prototype
- Continue Developing Key Policy Control Technologies
- Conduct Early Incremental Field Demos
 - Build Confidence in XG Capabilities Though A Series of Demos
 - Increase capability and environmental complexity at each demo
 - Implement Networks Of Spectrum-agile Radios Which
 Dynamically Adapt To Changing Spectrum Environments
 - 10x More Spectrum Without Interference To Non-XG Radios
 - Demonstrate And Validate The XG Prototype's Capabilities In Representative Military And Urban RF Environments.
- Transition to Military Program of Record In FY07